2020

MATHEMATICS - GENERAL

Fourth Paper

Full Marks : 100
Candidates are required to give their answers in their own words as far as practicable.

SET - 3

প্রান্তলিখিত সংখ্যগুলি পূণমান নির্দেশক।
Module-VII is compulsory and answer any one Group from Module-VIII

Module-VII

[Elements of Computer Science and Programming]
(মান : ৫০)

১নং প্রপ্ন এবং অবশিষ্ট থেকে যে-কোনো তিনটি প্রক্নের উত্তর দাও।
১। যে-কোনো পাঁচটি প্রশ্নের উত্তর দাও:

(খ) কোনো বুলীয় বীজগণিত $(B,+, \bullet, /)-এ ~ প ্ র ম া ণ ~ ক র ে া ~ a+a=a, ~ \forall a \in B$ ।
(গ) $f(x, y, z)=x y+x z$ রাশিটিকে সম্পূর্ণ DNF-আকারে লেখো।
(ঘ) নিন্নলিখিত Boolean অপেক্ষক-এর সত্যসারণি লেতো : $f=x y^{\prime}+y\left(x^{\prime}+z\right)$
(ঙ) নিম্নের বর্তনীকে উপলক্ধি করতে পারে এমন একটি বুলীয় অপেকক্ক গঠন করো।

(চ) নিম্নলিখিত FORMAT-বিবৃতিটির output/চূড়ান্তরূপ লেতো। শূন্যস্থানকে \mathfrak{b}-সংকেত দিয়ে নির্দেশ করো।
X $=283.567$
WRITE $(6,200) \mathrm{X}$
200 FORMAT (3X, F 7.2)
(ছ) নিম্নলিখিত FORTRAN-প্রোগ্রামের চূড়ান্ত ফলগুলি লেখো :
INTEGER X, Y, Z
$X=20$
$Y=15$
$X=X+Y$
$Y=X+Y$
$Z=X+Y$
PRINT*, ' $X=$ ', X, ' $Y=$ ', $Y, ~ ' ~ Z=', ~ Z$
STOP
END
(জ) $\operatorname{cosec}^{-1}\left(1+x+x^{y}\right)$ কে FORTRAN-এর রূৃপ লেঢো।
(ঝ) $(1573)_{8}$ এই অষ্টাঙ্গী সংখ্যাটিকে দ্বৈতাঙ্গী সংখ্যাতে পরিণত করো এবং ওই দ্বৈতাঙ্গী সংখ্যাকে যোড়শ সংখ্যাতে পরিণত করো।
২। (ক) 2' complement পদ্ধতিতে 111111_{2} থেকে 100001_{2}-কে বিয়োগ করো।
(খ) নিম্নলিখিত বুলীয় অপেক্ষকটির একটি সত্যসারণি গঠন করো ঃ

$$
f(x, y, z)=x y^{\prime} z+x^{\prime}\left(y+z^{\prime}\right)
$$

অতঃপর, অপেক্ষকটিকে DNF-আকারে প্রকাশ করো।
৩। (ক) নিম্নলিখিত বুলীয় অপেক্ষকটিকে CNF-আকারে প্রকাশ করো ঃ

$$
f(a, b, c)=a b c+(a+b)(a+c)
$$

(খ) AND এবং NOR বর্তনীদ্বার ব্যবহার করে নিম্নলিখিত অপেক্ষকটিকে প্রকাশ করো ঃ

$$
f(a, b)=a+b . c
$$

(গ) নিম্নলিখিত বুলীয় রাশিটিকে POS form-এ ক্ষুদ্রতম আকারে প্রকাশ করো K-map ব্যবহার করে :

$$
\propto(x, y, z)=x^{\prime} y z+x y z^{\prime}+x y z
$$

8। (ক) তিনটি বাস্তব সংখ্যা X, Y, Z-এর ক্ষুদ্রতমটি নির্ণয় করার জন্য একটি গতিচিত্র অঙ্কন করো।
(খ) প্রথম ‘ N ’ সংখ্যক জোড় সংখ্যাকে মুদ্রণ করার জন্য এবং তাদের যোগফল নির্ণয় করার জন্য একটি FORTRAN 77/90 প্রোগ্রাম লেতো।

৫। (ক) IF-বিবৃতি ব্যবহার করে x-এর একটি উল্লিখিত মানের জন্য $f(x)$-এর মান নির্ণয় করার একটি FORTRAN 77/90 প্রোগ্রাম
লেখো, যেখানে $f(x)=x^{2}-5 x, x<3$

$$
\begin{aligned}
& =x^{3}, x=3 \\
& =x^{2}+5, x>3
\end{aligned}
$$

(খ) প্রথম 100-টি স্বাভাবিক সংখ্যার যোগফল ও তাদের গড় নির্ণয়ের একটি Algorithm রচনা করো।

৬। (ক) নিম্নলিখিত পদগুলির সম্পূর্ণ অর্থ লেটো এবং ব্যাখ্যা করো (যে-কোনো দুটি) ঃ
(ज) BIT
(आ) BYTE
(弓) ALU
(খ) x-এর একটি প্রদত্তমানের জন্য নিম্নলিখিত অসীম শ্রেণিটির যোগফল নির্ণয়়র একটি FORTRAN 77/90 প্রোগ্রাম লেতো; যেখানে সংখ্যাগত త্রুটির মান $10^{-5}-এ র ~ ক ম ~ হ ব ে । ~$

$$
1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
$$

१। (ক) Trapezoidal rule ব্যবহার করে $\int_{a}^{b} f(x) d x$ সমাকলটি নির্ণয়ের জন্য একটি BASIC-প্রোগ্রাম লেযো যেখানে দেওয়া आজে, $f(x)=\frac{1}{\sqrt{1+x^{2}}}, a=1, b=2, n=10=$ উপ-অন্তরের সংখ্যা।
(খ) n এবং $r(r<n)$ এই দুটি ধনাত়ক পূণ্ণসংখ্যা দিয়ে ${ }^{n} C_{r}-$-এর মান নির্ণয় করার জন্য FORTRAN 77/90/BASIC প্রোগ্রাম লেখোে।

৮। (ক) নিম্নলিখিত প্রোগ্রামের অংশটির নিষ্পাদনের পর I-এর চূড়ান্ত মান নির্ণয় করো এবং উপযুক্ত ব্যাখ্যা দাও।

$$
\begin{aligned}
& I=3 \\
& \text { DO } 50 J=5,20, I \\
& I=I+J
\end{aligned}
$$

50 CONTINUE

(খ) নিন্নলিথিত যে-কোনোদুটির পার্থক্স লেটো :
(অ) সফটওয়ার এবং হার্ডওয়ার
(অ) সংকলক ও অনুবাদক
(ই) উৎস প্রোগ্রাম ও বস্তু প্রোগ্রাম।
৯। (ক) নিন্নলিথিত বাস্তব সংখ্যাগ্লিকে Bubble Sort-এর সাহায্যে ঊর্ধ্বক্রমানুসারে সাজানোর জন্য একটি গতিচিত্র অঙ্কন করো :

$$
75,82,91,34,28,102,55
$$

(খ) Newton-Raphson পদ্ধতি ব্যবহার করে $3 x^{2}+2 x-9=0$ এই সমীকরণের একটি বাস্তব মূল নিণতয়ের জন্য একটি FORTRAN 77/90 অथবা BASIC প্রোগ্রাম লেতেো যেখানে উত্তর ছয়দশমিক সংখ্যা পর্যন্ত নির্ভুল হবে।

১০। (ক) FORTRAN 77/90-এ नিম্নলিখিত রাশিগুলির রূপ নির্ণয় করো :
(ज) $\frac{\sqrt{x}+\tan x}{y+z \log _{e} x}$
(आ) $\sec ^{-1}\left(\sqrt{x^{2}+1}\right)$
(ই) $|\cos x|+e^{-\frac{x^{2}}{5}}$
(ॠ) $\sin \left(\log _{10}\left(\sqrt{x^{2}+a^{2}}\right)\right)$
(খ) দুটি প্রদত্ত ধনাত্মক অখণ্ড সংখ্যার গ.সা.গু. নির্ণয় করার জন্য একটি FORTRAN 77/90/C প্রোগ্রাম লেখো।

[English Version]

The figures in the margin indicate full marks.
Module - VII
[Elements of Computer Science and Programming]
(Marks : 50)
Answer question no. 1 and any three questions from the rest.

1. Answer any five questions:
(a) Convert $(\mathrm{C} 5 \mathrm{~A})_{16}$ to its decimal equivalent and $(9826)_{10}$ to its hexa-decimal equivalent.
(b) In a Boolean algebra $(B,+, \cdot, /)$ prove that $a+a=a, \forall a \in B$.
(c) Write the function $f(x, y, z)=x y+x z$ in full disjunctive normal form.
(d) Construct the truth table for the Boolean function $f=x y^{\prime}+y\left(x^{\prime}+z\right)$.
(e) Find the Boolean function which represent the following circuit:

(f) What will be the output of the following FORMAT statement? Indicate blank space by b.

$$
\begin{aligned}
& \mathrm{X}=283.567 \\
& \text { WRITE }(6,200) \mathrm{X} \\
& \text { 200 FORMAT (3X, F } 7.2)
\end{aligned}
$$

(g) What will be the output of the following FORTRAN programme?

INTEGER X, Y, Z
$X=20$
$Y=15$
$X=X+Y$
$Y=X+Y$
$Z=X+Y$
PRINT*, ' $X=$ ', X, ' $Y=$ ', Y, ' $Z=$ ', Z
STOP
END
(h) Write FORTRAN expression of $\operatorname{cosec}^{-1}\left(1+x+x^{y}\right)$
(i) Convert the octal number $(1573)_{8}$ to binary number, then convert it to hexa-decimal number.
2. (a) Subtract the binary numbers 100001_{2} from 111111_{2} using 2 's complement.
(b) Construct the truth table of the following Boolean function:

$$
f(x, y, z)=x y^{\prime} z+x^{\prime}\left(y+z^{\prime}\right)
$$

Hence, write the function in disjunctive normal form.
3. (a) Reduce the following Boolean function to its conjuctive normal form:

$$
f(a, b, c)=a b c+(a+b)(a+c)
$$

(b) Obtain the circuit for the following function using AND and NOR gates:

$$
f(a, b)=a+b . c
$$

(c) Minimize the following Boolean expressions in POS form using K-maps :

$$
\propto(x, y, z)=x^{\prime} y z+x y z^{\prime}+x y z
$$

4. (a) Draw a flowchart to find the smallest of three distinct real numbers among $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$.
(b) Write a FORTRAN $77 / 90$ programme which will print the first N even integers and also find their sum.
5. (a) Write a programme in FORTRAN $77 / 90$ to evaluate the function $f(x)$ defined below for a given value of x by using Arithmetic IF statement.

$$
\begin{aligned}
f(x) & =x^{2}-5 x, x<3 \\
& =x^{3}, x=3 \\
& =x^{2}+5, x>3 .
\end{aligned}
$$

(b) Design an algorithm to compute the sum of first 100 natural numbers and their mean.
6. (a) Explain the following terms giving their full form (any two) :
(i) BIT
(ii) BYTE
(iii) ALU
(b) Write a programme in FORTRAN $77 / 90$ to evaluate the sum of the infinite series $1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$. with an error $<10^{-5}$ for some given value of x.
7. (a) Write a programme in BASIC to evaluate the integral $\int_{a}^{b} f(x) d x$ by Trapezoidal rule, using 10 sub-intervals where $f(x)=\frac{1}{\sqrt{1+x^{2}}}, a=1, b=2$.
(b) Write a programme in FORTRAN 77/90/BASIC to compute the value of ${ }^{n} C_{r}$ for a given positive integral value of r and $n .(r<n)$
8. (a) Find the value of I that will be generated after the execution of the following programme segment (with proper justification) :

$$
\begin{aligned}
& I=3 \\
& \mathrm{DO} 50 J=5,20, I \\
& I=I+J
\end{aligned}
$$

50 CONTINUE

(b) Write down the differences between any two of the following:
(i) Software and Hardware
(ii) Compiler and Interpreter
(iii) Source programme and Object programme.
9. (a) Draw a flow chart for sorting, using bubble sort, the following numbers in ascending order :

$$
75,82,91,34,28,102,55
$$

(b) Write a programme in FORTRAN 77/90 or BASIC to find a real root of the equation $3 x^{2}+2 x-9=0$ by Newton-Raphson method correct to six decimal places.
10. (a) Write the following expressions in FORTRAN 77/90.
(i) $\frac{\sqrt{x}+\tan x}{y+z \log _{e} x}$
(ii) $\sec ^{-1}\left(\sqrt{x^{2}+1}\right)$
(iii) $|\cos x|+e^{-\frac{x^{2}}{5}}$
(iv) $\sin \left(\log _{10}\left(\sqrt{x^{2}+a^{2}}\right)\right)$
(b) Write a FORTRAN 77/90/C programme to find the HCF of two given positive integers.

Module-VIII
 (বিভাগ - ক)

[A Course of Calculus]

(মান : ৫०)
১১নং প্রক্ন এবং অবশিষ্ট থেকে যে-কোনো তিনটি প্রকেের উত্তর দাও।
১১। যে-কোনো পাঁচটি প্রশেরের উত্তর দাও:
(ক) $\sum_{n=0}^{\infty} \frac{2 n!}{n!n!} x^{n}$-এর (ঘাত শ্রেণি) অভিসরণ ব্যাসার্ধ নিণ্ণয় করো।
(খ) $\left\{f_{n}\right\}$-এর অভিসরণ পরীক্ষা করো, যেখানে $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}} n \in N, \forall x>0$ ।
(গ) দেখাও বে, $\sum_{n=1}^{\infty} \frac{1}{n^{2}+\sin ^{2} x}$ টि R-এর উপর সমভাবে অভিসারী।
(ঘ) অनिন্ণীত সহগ পদ্ধতির সাহায়্যে $\frac{d^{2} y}{d x^{2}}+y=2$ অবকল সমীকরণটির Particular Integral নির্ণয় করো।
(ঙ) নিণ্ৰয় করো : $L\left\{\sin ^{2} 2 t-\cos ^{2} 2 t\right\}$
(চ) $\frac{d^{2} y}{d x^{2}}+y=\sin x$ অবকল সমীকরণণের Particular Integral নির্ণয় করো।
(ছ) $z=a x+a^{2} y^{2}+b$ থেকে ' a ' ও ‘ b '-কে অপসারিত করে একটি আংশিক অবকল সমীকরণ গঠন করো।
(জ) यদি $f(-x)=-f(x)$ হয়, $[-\pi, \pi]$-এর মব্যে সমস্ত $x-এ র ~ জ ন ্ য ~ দ ে খ া ও ~ ব ে ~ f ~ অ প ে ক ক ক ট ি র ~ F o u r i e r ~ স হ গ ~ a n ~ a, ~$ যেখানে $n=0,1,2, \ldots . .1$
(ঝ) p.d.e. নিণর্য করো যেখানে $z=f\left(\frac{x y}{z}\right), f$-কে অপসারণ করে।

১২। (ক) ধরি $f_{n}(x)=\frac{x}{1+n x^{2}}, x \in R$ দেখাও যে $\left\{f_{n}\right\}$ অপেক্ষকের অনুক্রমটি সমস্ত $x \in R$-এর জন্য সমভাবে অভিসারী।
(খ) দেখাও বে, $\left\{f_{n}\right\}$ অনুক্রমটি বেখানে $f_{n}(x)=\frac{1}{1+x^{n}},[0,1]$ অন্তরালে সমভাবে অভিসারী নয়।
১৩। (ক) দেখাও ভে, $x^{4}+\frac{x^{4}}{1+x^{4}}+\frac{x^{4}}{\left(1+x^{4}\right)^{2}}+\ldots$ শ্রেণিটি $[0,1]$ অন্তরালে সমভাবে অভিসারী নয়।
(খ) বিস্থৃতি $(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots . .(-1<x<1)$ থেকে $\log _{e}(1+x)-এ র$ घাতশ্রেণির বিস্তৃতি নিণর্ণ করো। ১০

28। (ক) অनिন্ণীত সহগ পদ্ধতির সাহয্যে সমাধান করো: $\frac{d^{2} y}{d x^{2}}=2 x^{2}$
(খ) $\frac{d^{2} y}{d x^{2}}+\lambda y=0(\lambda>0)$-এর आইগেন মানসমূহ ও আইগেন অগেক্ষকগুলি নিণর্য় করো, যেখানে $y_{1}(0)=0, y_{1}(1)=0$ ।

১৫। (ক) डেদপ্রাচল পদ্ধতি দ্বারা $\frac{d^{2} y}{d x^{2}}+9 y=\operatorname{cosec} 3 x-এ র ~ স ম া ধ া ন ~ ক র ে া । ~$
(খ) সমাধান করো : $\frac{d x}{d t}=x-2 y$

$$
\frac{d y}{d t}=4 x+5 y
$$

১৬। (ক) Lagrange পদ্ধতিতে $x\left(y^{2}-z^{2}\right) p+y\left(z^{2}-x^{2}\right) q=z\left(x^{2}-y^{2}\right)$ সমাধান করো।
(খ) ϕ-কে অপসারণ করে p.d.e. নিণ্ণয় করো যেখানে $\phi\left(x+y+z, x^{2}+y^{2}-z^{2}\right)=0$ ।
১৭। (ক) यमि $L\{F(t)\}=f(s)$ হয়, প্রমাণ করো $L\{F(a t)\}=\frac{1}{a} f(s / a), a>0$ ।
(খ) দেওয়া আছে, $L\{\cos a t\}=\frac{s}{s^{2}+a^{2}}$
তা হরে বের করো :
(ज) $L\{t \cos a t\}$
(जा) $L\{\sin a t\}$
(弓) $L\{t \cos a t-\sin a t\}$

د৮। (ক) অनिর্ণীত সহ্গ (Undetermined coefficient) পদ্ধতি প্রয়োগ করে সমাধান করো : $\frac{d^{2} y}{d x^{2}}-y=e^{x} \sin 2 x$
(খ) সমাধান করো : $\frac{d^{4} y}{d x^{4}}-y=x \sin x$ ।

১৯। (ক) অবাধ অপেক্ষক f-কে $z=f\left(\frac{x y}{z}\right)$ থেকে অপসারণ করে একটি আংশিক অবকল সমীকরণণ গঠন করো।
(খ) আংশিক অবকল সমীকরণটি সমাধান করো: $y^{2} p-x y q=x(z-2 y)$

২০। $f(x)=|x|, x \in[-\pi, \pi]$ অপেক্ষকটির Fourier শ্রেণিটি নির্ণয় করো। এর থেরে দেখাও যে $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$
১O

[English Version]

The figures in the margin indicate full marks.
Module - VIII
(Group - A)

[A Course of Calculus]

(Marks : 50)
Answer question no. 11 and any three questions from the rest.
11. Answer any five questions:
(a) Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{2 n!}{n!n!} x^{n}$.
(b) Test the convergence of $\left\{f_{n}\right\}$ where $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}, n \in N, \forall x>0$.
(c) Show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}+\sin ^{2} x}$ is uniformly convergent on R.
(d) Find Particular Integral (P.I.) of $\frac{d^{2} y}{d x^{2}}+y=2$, by the method of undetermined coefficients.
(e) Find : $L\left\{\sin ^{2} 2 t-\cos ^{2} 2 t\right\}$
(f) Find Particular Integral (P.I.) of $\frac{d^{2} y}{d x^{2}}+y=\sin x$.
(g) Form a partial differential equation by eliminating a and b from $z=a x+a^{2} y^{2}+b$.
(h) If $f(-x)=-f(x)$ for all x in $[-\pi, \pi]$, show that for the function f, the Fourier coefficients $a_{n}=0$, for all $n=0,1,2, \ldots \ldots$.
(i) Find p.d.e from $z=f\left(\frac{x y}{z}\right)$, by eliminating f.
12. (a) Let $f_{n}(x)=\frac{x}{1+n x^{2}}, x \in R$. Show that the sequence of functions $\left\{f_{n}\right\}$ is uniformly convergent for all $x \in R$.
(b) Show that the sequence $\left\{f_{n}\right\}$ where $f_{n}(x)=\frac{1}{1+x^{n}}$ is not uniformly convergent on $[0,1] . \quad 10$
13. (a) Show that the series $x^{4}+\frac{x^{4}}{1+x^{4}}+\frac{x^{4}}{\left(1+x^{4}\right)^{2}}+\ldots$ is not uniformly convergent on $[0,1]$.
(b) Assuming the power series expansion for $(1+x)^{-1}$ as $(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots .(-1<x<1)$. Obtain the power series expansion of $\log _{e}(1+x)$.
14. (a) Solve by method of undetermined coefficient $\frac{d^{2} y}{d x^{2}}=2 x^{2}$.
(b) Find the eigenvalues and eigenfunction for the differential equation :

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+\lambda y=0(\lambda>0), \quad y_{1}(0)=0, y_{1}(1)=0 \tag{10}
\end{equation*}
$$

15. (a) Solve by the method of variation of parameters, $\frac{d^{2} y}{d x^{2}}+9 y=\operatorname{cosec} 3 x$.
(b) Solve: $\frac{d x}{d t}=x-2 y$

$$
\begin{equation*}
\frac{d y}{d t}=4 x+5 y \tag{10}
\end{equation*}
$$

16. (a) Solve by Lagrange's Method: $x\left(y^{2}-z^{2}\right) p+y\left(z^{2}-x^{2}\right) q=z\left(x^{2}-y^{2}\right)$.
(b) Form a p.d.e by eliminating arbitrary function ϕ where $\phi\left(x+y+z, x^{2}+y^{2}-z^{2}\right)=0$.
17. (a) If $L\{F(t)\}=f(s)$, prove $L\{F(a t)\}=\frac{1}{a} f(s / a), a>0$.
(b) Given $L\{\cos a t\}=\frac{s}{s^{2}+a^{2}}$

Hence find :
(i) $L\{t \cos a t\}$
(ii) $L\{\sin a t\}$
(iii) $L\{t \cos a t-\sin a t\}$
18. (a) Solve by the method of undetermined coefficients: $\frac{d^{2} y}{d x^{2}}-y=e^{x} \sin 2 x$
(b) Solve : $\frac{d^{4} y}{d x^{4}}-y=x \sin x$.
19. (a) Form partial differential equation by eliminating the arbitrary function from $z=f\left(\frac{x y}{z}\right)$.
(b) Solve the partial differential equation $y^{2} p-x y q=x(z-2 y)$.
20. Find the fourier series for the function $f(x)=|x|, x \in[-\pi, \pi]$

Hence, deduce $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$.

Module-VIII

(বিভাগ - খ)

[Discrete Mathematics]

(মান : ৫০)

১১নং প্রশ্ন এবং অবশিষ্ট থেকে যে-কোনো তিনটি প্রশ্নের উত্তর দাও।
১১। যে-কোনো পাঁচটি প্রশ্নের উত্তর দাও:
(ক) $\phi(72)$ निর্ণয় করো, যেখানে ϕ হল অয়লার-এর $\phi(P h i)$ অপেক্ষক।
(খ) (E874) ${ }_{16}$ যোড়শাঙ্গীকে দ্বিনিধানী আকারে প্রকাশ করো।
(গ) m ও $n>0$ দুটি পূর্ণসংখ্যা এবং $\operatorname{gcd}(m, n)=d ।$ যদি $m=d p$ এবং $n=d q$ হয়, তাহলে দেখাও $\operatorname{gcd}(p, q)=1$ ।
(ঘ) a একটি পূর্ণপংখ্যা হলে দেখাও যে $\frac{a\left(a^{2}+2\right)}{3}$ আকারের সংখ্যাটি একটি পূর্ণসংখ্যা।
(ঙ) $9^{342-ক ে ~} 10$ দ্বারা ভাগ কর়লে ভাগশুয কত হবে তা Congruence-এর সাহাব্যে নির্ণয় করো।
(চ) $(B,+, \bullet, /)$ বুলীয় অ্যালজের্রাতে $a+b=a+c$ ও $a^{\prime}+b=a^{\prime}+c$ হলে প্রমাণ করো $b=c$ যেখানে $a, b, c \in B$ ।
(ছ) সত্যসারণি গঠন করো ঃ $(p \rightarrow q) \rightarrow(\neg q \rightarrow \neg p)$
(জ) x এবং y দুটি বিজোড় সংখ্যা হলে প্রমাণ করো $x^{2}+y^{2}$ একটি জোড় সংখ্যা কিন্তু 4 দ্বারা বিভাজ্য নয়।
(ঝ) $16!$ সংখ্যাটিকে 17 দ্বারা ভাগ করলেল ভাগশেয নিণণয় করো।
১২। (ক) 7-টি দলের ঢুর্নামেট্টের জন্য একটি ‘Round Robin Tournament’ গঠন করো (কনগ্রুত্যেন রিলেশান ব্যবহর করে)।
(খ) একজন ছাত্র কিছু বই ও পেন 321 টাকার বিনিময়ে ক্রয় করে। প্রতিটি বইয়ের দাম 12 টাকা ও প্রতিটি পেনেের দাম 7 টাকা ‘Diophantine equations'-এর মাধ্যমে সন্ভাব্য পূর্ণসংখ্যার সমাধান করো।

১৩। (ক) Difference equation-টি সমাধান করো :

$$
2 a_{n}=7 a_{n-1}-3 a_{n-2}, n \geq 2, a_{0}=1, a_{1}=1
$$

(খ) ISBN 3-540-19102-X-টি বৈধ কিনা নিির্ণয় করো।
381 (ক) $x y z+x y^{\prime} z+x^{\prime} y$ বুলীয় রাশিমালাটির একটি বোক্তিক বর্তনী নির্ণয় করো।
(খ) NAND দ্বারের একটি সতসসারণি গঠন করো। কেবলমাত্র NAND দ্বার ব্যবহার করে একটি বৌক্তিক বর্তনী অঙ্কন করো या $f(x, y, z)=x+y z$ এই সত্য অপেক্ষককে প্রকাশ করে।

১৫। (ক) দেখাও যে $p^{q-1}+q^{p-1} \equiv 1(\bmod p q)$ ปেখানে p, q হল ভিন্ন बৌলিক সংখ্যা।
(খ) অসম্পূর্ণ UPC-টির সঠিক Check digit (চেক অঙ্ক)-টি নিণ্ণয় করো ঃ 05000030043
১৬। (ক) দেখাও যে $n^{2}<2^{n} \forall n \geq 5, n$ ধनाত্যক পূণ্ণংখ্যা।
(খ) নিম্নলিখিত Diophantine-সমীকরণঢি সমাধান করো :

$$
\begin{equation*}
8 x-14 y=16 \tag{১০}
\end{equation*}
$$

১৭। (ক) সত্যসারণি ব্যবহার করে প্রমাণ করো বে, $a \cdot(b+c)=a \cdot b+a \cdot c, a, b, c \in B$ এবং B একটি বুলীয় বীজগণিত।
(খ) গাণিতিক আরোহণ পদ্ধত্তিতে প্রমাণ করো যে, $1.2+2.3+3.4+\ldots+n(n+1)=\frac{n(n+1)(n+2)}{3}$

১৮। (ক) Congruence-সমীকরণগুলির সমাধান করো।
$x \equiv 2(\bmod 3)$,
$x \equiv 3(\bmod 5)$,
$x \equiv 1(\bmod 7)$,
(খ) নিম্নলিথিত সংখ্যাটির একক অঙ্কটি নির্ণয় করো :
$1!+2!+3!+\ldots+49$!
১৯। (ক) প্রমাণ করো যে অসীম সংখ্যক মৌলিক সংখ্যা আছে।
(খ) নিম্নবর্ণিত UPC-টি সঠিক কিনা নির্ধারণ করো :

$$
00500030042-6 \text {. }
$$

[English Version]

The figures in the margin indicate full marks.

Module - VIII

(Group - B)
[Discrete Mathematics]
(Marks : 50)
Answer question no. $\mathbf{1 1}$ and any three questions from the rest.
11. Answer any five questions:
(a) Find $\phi(72)$ where ϕ is the Euler's Phi function.
(b) Convert (E874) ${ }_{16}$ from hexa-decimal to binary number.
(c) Let m and n be integers >0 and $\operatorname{gcd}(m, n)=d$. If $m=d p$ and $n=d q$ then prove that $\operatorname{gcd}(p, q)=1$.
(d) Show that the number of the form $\frac{a\left(a^{2}+2\right)}{3}$ is an integer where a is an integer.
(e) Find the remainder when 9^{342} is divided by 10 using congruence.
(f) In a Boolean algebra ($B,+, \cdot, /$), prove that $a+b=a+c$ and $a^{\prime}+b=a^{\prime}+c \rightarrow b=c, \forall a, b, c \in B$.
(g) Construct truth table for the statement formula : $(p \rightarrow q) \rightarrow(\neg q \rightarrow \neg p)$
(h) Prove that if x and y are odd integers then $x^{2}+y^{2}$ is an even integer but not divisible by 4 .
(i) Find the remainder when 16 ! is divided by 17 .
12. (a) Construct a Round Robin Tournament Schedule for 7 teams using congruences of integers.
(b) A student spends ₹ 321 to buy some books and pens. The cost of each book is ₹ 12 and that of each pen is ₹ 7 . Find the possible integral solution by forming a Diophantine equation.
13. (a) Solve the difference equation: $2 a_{n}=7 a_{n-1}-3 a_{n-2}, n \geq 2, a_{0}=1, a_{1}=1$
(b) Determine whether the ISBN 3-540-19102-X is valid.
14. (a) Find the logic circuit of the Boolean expression $x y z+x y^{\prime} z+x^{\prime} y$.
(b) Form a truth table for a NAND gate. Draw a logic circuit using NAND gate only that realizes the truth function $f(x, y, z)=x+y z$.
15. (a) Show that $p^{q-1}+q^{p-1} \equiv 1(\bmod p q)$, where p, q are distinct prime numbers.
(b) Determine the correct check digit for the incomplete UPC : 05000030043 .
16. (a) Show that $n^{2}<2^{n} \forall n \geq 5, n$ is positive integer.
(b) Solve the following Diophantine equation : $8 x-14 y=16$.
17. (a) Verify by means of truth table that for $a, b, c \in B, a \cdot(b+c)=a \cdot b+a \cdot c$ where B is a Boolean Algebra.
(b) Prove using mathematical induction $1.2+2.3+3.4+\ldots+n(n+1)=\frac{n(n+1)(n+2)}{3}$.
18. (a) Solve the system of linear congruence equations:

$$
x \equiv 2(\bmod 3), x \equiv 3(\bmod 5), x \equiv 1(\bmod 7)
$$

(b) Find the digit in unit place in the sum : $1!+2!+3!+\ldots+49$!
19. (a) Prove that there are infinitely many prime numbers.
(b) Check whether $00500030042-6$ is a correct UPC.

